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Abstract

Magnetic fields on small scales are ubiquitous in the universe. Though
they can often be observed in detail, their generation mechanisms are
not fully understood. One possibility is the so-called small-scale dynamo
(SSD). Prevailing numerical evidence, however, appears to indicate that
an SSD is unlikely to exist at very low magnetic Prandtl numbers (PrM)
such as are present in the Sun and other cool stars. We have performed
high-resolution simulations of isothermal forced turbulence employing
the lowest PrM values so far achieved. Contrary to earlier findings, the
SSD turns out to be not only possible for PrM down to 0.0031, but
even becomes increasingly easier to excite for PrM below ≃ 0.05. We
relate this behaviour to the known hydrodynamic phenomenon referred
to as the bottleneck effect. Extrapolating our results to solar values of
PrM indicates that an SSD would be possible under such conditions.

Astrophysical flows are considered to be susceptible to two types of dynamo
instabilities. Firstly, a large-scale dynamo (LSD) is excited by flows exhibiting
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helicity, or more generally, lacking mirror-symmetry, due to rotation, shear,
and/or stratification. It generates coherent, dynamically significant, magnetic
fields on the global scales of the object in question [1]. Characteristics of LSDs
vary depending on the dominating generative effects, such as differential rota-
tion in the case of the Sun. Convective turbulence provides both generative
and dissipative effects [2], and their presence and astrophysical relevance is no
longer strongly debated.

The presence of the other type of dynamo instability, namely the small-
scale or fluctuation dynamo (SSD), however, remains controversial in solar and
stellar physics. In an SSD-active system, the magnetic field is generated at
scales comparable to, or smaller than the characteristic scales of the turbulent
flow, enabled by chaotic stretching of field lines at high magnetic Reynolds
number [3]. In contrast to the LSD, excitation of an SSD requires significantly
stronger turbulence [1]. Furthermore, it has been theorized that it becomes
more difficult to excite SSD at very low magnetic Prandtl number PrM [4–10],
the ratio of kinematic viscosity ν and magnetic diffusivity η. In the Sun, PrM
can reach values as low as 10−6–10−4 [11], thus seriously repudiating whether
an SSD can at all be present. Numerical models of SSD in near-surface solar
convection typically operate at PrM ≈ 1 [12–18] and thus circumvent the issue
of low-PrM dynamos.

A powerful SSD may potentially have a large impact on the dynamical
processes in the Sun. It can, for example, influence the angular momentum
transport and therefore the generation of differential rotation [19, 20], interact
with the LSD [21–25] or contribute to coronal heating via enhanced photo-
spheric Poynting flux [26]. Hence, it is of great importance to clarify whether
or not an SSD can exist in the Sun. Observationally, it is still debated whether
the small-scale magnetic field on the surface of the Sun has contributions from
the SSD or is solely due to the tangling of the large-scale magnetic field by
the turbulent motions [27–32]. However, these studies show a slight preference
of the small-scale fields to be cycle-independent. SSD at small PrM are also
important for the interiors of planets and for liquid metal experiments [33].

Various numerical studies have reported increasing difficulties in exciting
the SSD when decreasing PrM [6, 10, 34], confirming the theoretical pre-
dictions. However, current numerical models reach only PrM = 0.03 using
explicit physical diffusion or slightly lower (estimated) PrM, relying on artifi-
cial hyperdiffusion [7, 8]. To achieve even lower PrM, one needs to increase the
grid resolution massively, see also [35]. Exciting the SSD requires a magnetic
Reynolds number (ReM) typically larger than 100; hence, e.g., PrM = 0.01
implies a fluid Reynolds number Re = 104, where Re = urmsℓ/ν, urms being
the volume integrated root-mean-squared velocity, ℓ a characteristic scale of
the velocity, and ReM = PrMRe. In this paper, we take this path and lower
PrM significantly using high-resolution simulations.
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Fig. 1 Visualisation of flow and SSD solution. Flow speed (left) and magnetic field
strength (right) from a high resolution SSD-active run with Re = 18200 and PrM = 0.01 on
the surface of the simulation box.

Results

We include simulations with resolutions of 2563 to 46083 grid points and Re =
46 to 33000. This allows us to explore the parameter space from PrM = 1 to
0.0025, which is closer to the solar value than has been investigated in previous
studies. For each run, we measure the growth rate λ of the magnetic field in
its kinematic stage and determine whether or not an SSD is being excited.

To afford an in-depth exploration of the effect of PrM, we omit large-scale
effects such as stratification, rotation and shear. We avoid the excessive inte-
gration times, required to simulate convection, by driving the turbulent flow
explicitly under isothermal conditions. Our simulation setup consists of a fully
periodic box with a random volume force, see Online Methods for details; the
flow exhibits a Mach number of around 0.08. In Fig. 1, we visualize the veloc-
ity and magnetic fields of one of the highest resolution and Reynolds number
cases. As might be anticipated for low PrM turbulence, the flow exhibits much
finer, fractal-like structures than the magnetic field. Note, that all our results
refer to the kinematic stage of the SSD, where the magnetic field strength is
far too weak to influence the flow and otherwise arbitrary.

Growth rates and critical magnetic Reynolds numbers

In Fig. 2 we visualize the growth rate λ as function of Re and ReM. We find
positive growth rates for all sets of runs with constant PrM if ReM is large
enough. λ increases always with increasing ReM as expected. Surprisingly, the
growth rates are significantly lower within the interval from Re = 2000 to
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Fig. 2 Small-scale dynamo growth rate as function of the fluid and magnetic
Reynolds numbers (Re and ReM). The diamonds represent the results of this work and
the triangles those of [10]. The color coding indicates the value of the normalized growth
rate λτ with τ = 1/urmskf , a rough estimate for the turnover time. Dotted lines indicate
constant magnetic Prandtl number PrM. White circles indicate zero growth rate for certain
PrM, obtained from fitting for the critical magnetic Reynolds number, as shown in Fig. 3;
fitting errors are signified by yellow-black bars. see Supplementary Material, Section 5. The
background colors including the thin black line (zero growth) are assigned via linear inter-
polation of the simulation data. The green dashed line shows the power-law fit of the critical
ReM for PrM ≤ 0.08, with power 0.125, see Fig. 3b.

10000 than below and above. With the ReM values used, this maps roughly to
a PrM interval from about 0.1 to 0.04.

The growth rates for PrM = 0.1 match very well the ones from [10], indi-
cated by triangles. From Fig. 2, we clearly see that the critical magnetic
Reynolds number RecritM , defined by growth rate λ = 0, first rises as a func-
tion of Re and then falls for Re > 3× 103, see the thin black line. Looking at
RecritM as a function of magnetic Prandtl number PrM, it first increases with
decreasing PrM and then decreases for PrM < 0.05. Hence, an SSD is easier to
excite here than for 0.05 < PrM < 0.1. We could even find a nearly marginal,
positive growth rate for PrM = 0.003125. The decrease of λ at low PrM is an
important result as the SSD was believed to be even harder [4, 9] or at least
equally hard [7, 8] to excite when PrM was decreased further from previously
investigated values. The growth rates agree qualitatively with the earlier work
at low PrM [6–8].

For a more accurate determination of RecritM , we next plot the growth rates
for fixed PrM as a function of ReM, see Fig. 3(a). The data are consistent with
λ ∝ ln (ReM/RecritM ) as theoretically predicted [36, 37]. Fitting accordingly, we
are able to determine RecritM as a function of PrM, see Fig. 3(b). The latter plot
clearly shows that there are three distinct regions of dynamo excitation: When
PrM decreases in the range 1 ≥ PrM ≥ 0.1 it becomes much harder to excite
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Fig. 3 Growth rate and critical Reynolds number. Panel (a): normalized growth
rate λτ as function of magnetic Reynolds number ReM for simulation sets with fixed
magnetic Prandtl number PrM, indicated by different colors. Logarithmic functions λτ ∝
ln (ReM/RecritM ) according to [36, 37] were fitted separately to the individual sets, as indicated
by the colored lines; see the dashed-dotted line for the mean slope. Panel (b): critical mag-
netic Reynolds number RecritM as function of PrM obtained from the fits in panel (a). Error
bars show the fitting error, see Supplementary Material, Section 5. The diamond indicates a
run with growth rate λ ≈ 0, hence its ReM represents ≈ RecritM for the used PrM = 0.003125.

The red dashed line is a power law fit RecritM ∝ Pr0.125M , valid for PrM ≲ 0.08. The grey

shaded area indicates the PrM interval where the dynamo is hardest to excite (RecritM ≳ 150).

the SSD. In the range 0.1 ≥ PrM ≥ 0.04, excitation is most difficult with little
variation of RecritM . For PrM ≤ 0.04, it again becomes easier as PrM reduces.
In [7, 8], the authors already found an indication of RecritM to level-off with
decreasing PrM, however only when using artificial hyperdiffusion. Similarly,
with our error bars, a constant RecritM cannot be excluded for 0.01 < PrM < 0.1.
However, at PrM = 0.005, the error bar allows to conclude that RecritM is
here lower than at PrM = 0.05. This again confirms our result that RecritM is
decreasing with PrM for very low PrM.

For PrM ≤ 0.05, the decrease of RecritM with PrM can be well represented
by the power-law RecritM ∝ Pr0.125M . Extrapolating this to the Sun and solar-like
stars would lead to RecritM ≈ 40 at PrM = 10−6, which means that we could
expect an SSD to be present. For increasing Re, by decreasing ν, it would be
reasonable to assert that the statistical properties of the flow and hence RecritM

become independent of PrM. However, episodes of non-monotonic behavior of
RecritM when approaching this limit cannot be ruled out.

The well-determined RecritM dependency on PrM together with its error bars
and the power-law fit have been added to Fig. 2, and agree very well with the
thin black line for λ = 0 interpolated from the growth rates.

Regions of dynamo excitation

Next we seek answers to the obvious question arising: why is the SSD harder
to excite in a certain intermediate range of PrM and easier at lower and higher
values? For this, we investigate the kinetic and magnetic energy spectra of
a representative subset of the runs, see Supplementary Table 2. We show in
Fig. 4 spectra of two exemplary cases: Run F005, with PrM = 0.05, probes the
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Fig. 4 Energy spectra. Kinetic (top row) and magnetic (bottom row) energy spectra for
two exemplary runs with Re = 7958, PrM = 0.05 (left column) and Re = 32930, PrM = 0.005
(right column). In the middle row, the kinetic spectra are compensated by k5/3. Vertical lines
indicate the forcing wavenumber kf (green solid), the wavenumber of the bottleneck’s peak
kb (red solid) and its starting point kbs (red dotted), the viscous dissipation wavenumber kν

(orange), the ohmic dissipation wavenumber kη = kνPr
3/4
M (dark blue) and the characteristic

magnetic wavenumber kM (light blue). All spectra are averaged over the kinematic phase
whereupon each individual magnetic spectrum was normalized by its maximum, thus taking
out the exponential growth.

PrM interval of impeded dynamo action, while Run H0005, with PrM = 0.005,
is clearly outside it; see Supplementary Fig. 1 and 2 for spectra of other cases.

In all cases the kinetic energy clearly follows a Kolmogorov cascade with
Ekin ∝ k−5/3 in the inertial range. When compensating with k5/3, we find
the well-known bottleneck effect [38, 39]: a local increase in spectral energy,
deviating from the power-law, as found both in fluid experiments [40–42] and
numerical studies [43, 44]. It has been postulated to be detrimental to SSD
growth [4, 10]. For the magnetic spectrum on the other hand, yet clearly visible
only for PrM ≤ 0.005, we find a power-law following Emag ∝ k−3. A 3/2 slope
at low wavenumbers as predicted by [45] is seen only in the runs with PrM
close to one, while for the intermediate and low PrM runs, the positive-slope
part of the spectrum shrinks to cover only the lowest k values, and the steep
negative slopes at high k values become prominent. A steep negative slope in
the magnetic power spectra was also seen by [7] for PrM slightly below unity.
However, the authors propose a tentative power of −1 given that the −3 slope
is not yet clearly visible for their PrM values.

Analyzing our simulations, we adopt the following strategy: For each spec-
trum, we determine the wavenumber of the bottleneck, kb, as the location of
its maximum in the (smoothed) compensated spectrum, along with its starting
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Fig. 5 Relation of the characteristic magnetic wavenumber kM to the bottle-
neck. We show its peak kb and its starting point kbs in red, the characteristic magnetic
wavenumber kM in light blue and the ohmic dissipation wavenumber kη in dark blue. The
red shaded area between kb and kbs corresponds to the low-wavenumber part of the bottle-
neck where the turbulent flow is rougher than for a −5/3 power-law. The Roman numbers
indicate the three distinct regions of dynamo excitation. The region of the weakest growth
(II) is over-plotted in grey. The characteristic magnetic wavenumber kM can be fitted by
two power laws (black dotted lines): kM/kν ∝ Pr0.54M for PrM ≥ 0.05 and kM/kν ∝ Pr0.71M
for PrM ≤ 0.05. All wavenumbers are normalized by the viscous one kν . We find that the
dynamo is hardest to excite if kM lies within the low-wavenumber side of the bottleneck.
Leaving this region towards lower or higher wavenumbers makes the dynamo easier to excite.
The inset shows kM/kη as a function of PrM.

point kbs < kb at the location with 75% of the maximum, see the middle-row
panels of Fig. 4. We additionally calculate a characteristic magnetic wavenum-
ber, defined as kM =

∫
k
Emag(k)k dk/

∫
k
Emag(k) dk, which is often connected

with the energy-carrying scale. Furthermore, we calculate the viscous dissipa-
tion wavenumber kν = (ϵK/ν

3)1/4 following Kolmogorov theory, where ϵK is
the viscous dissipation rate 2νS2 with the traceless rate-of-strain tensor of the
flow, S. From the relations between these four wavenumbers (listed in Supple-
mentary Table 2), we will draw insights about the observed behavior of RecritM

with respect to PrM.
We plot kb/kν and kbs/kν as functions of PrM in Fig. 5. As is expected,

kb/kν , or the ratio of the viscous scale to the scale of the bottleneck, does
not depend on PrM, as the bottleneck is a purely hydrodynamic phenomenon.
The start of the bottleneck kbs should likewise not depend on PrM, but the
low Re values for PrM = 1 to 0.1 lead to apparent thinner bottlenecks, hence
an unsystematic weak dependency. The red shaded area between kb and kbs
is the low-wavenumber part of bottleneck where the slope of the spectrum is
larger (less negative) than −5/3 see Supplementary Table 2 for values of the
modified slope αb and Supplementary, Section 1 for a discussion. We note that
αb ≈ −1.3 . . .−1.5 and can thus deviate significantly from −5/3. Overplotting
the kM/kν curve reveals that it intersects with the red shaded area exactly
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where the dynamo is hardest to excite (region II). This lets us conclude that
the shallower slope of the low-wavenumber part of the bottleneck may indeed
be responsible for enhancing RecritM in the interval 0.04 ≤ PrM ≤ 0.1. Using this
plot, we can now clearly explain the three regions of dynamo excitation. For
0.1 ≤ PrM ≤ 1 the low-wavenumber part of bottleneck and the characteristic
magnetic scale are completely decoupled. This makes the SSD easy to excite
(region I). For 0.04 ≤ PrM ≤ 0.1, (grey, region II), the dynamo is hardest to
excite because of the shallower slope of the kinetic spectra. In region III, where
PrM ≤ 0.04 the low-wavenumber part of bottleneck and the characteristic
magnetic scale are again completely decoupled making the dynamo easier to
excite.

Further, we find that the dependence of kM/kν on PrM also differs between
the regions. In region I kM/kν depends on PrM via kM/kν ∝ Pr0.54M and in
region II and III via kM/kν ∝ Pr0.71M . This becomes particularly interesting
when comparing the characteristic magnetic wavenumber kM with the ohmic

dissipation wavenumber which is defined as kη = kνPr
3/4
M . In region I, we find

a significant difference of kM and kη in value and scaling. However, in region
III the scaling of kM comes very close to the 3/4 scaling of kη. This behaviour
can be even better seen in the inset of Fig. 5, where the ratio kM/kη is 0.3 for
PrM = 1 and tends towards unity for decreasing PrM, but is likely to saturate
below 0.75.

Discussion

In conclusion, we find that the SSD is progressively easier to excite for mag-
netic Prandtl numbers below 0.04, in contrast to earlier findings, and thus is
very likely to exist in the Sun and other cool stars. Provided saturation at
sufficiently high levels, the SSD has been proposed to strongly influence the
dynamics of solar-like stars: previous numerical studies, albeit at PrM ≈ 1,
indicate that this influence concerns for example the angular momentum trans-
port [19, 20], and the LSD [21–25]. Our kinematic study, however, only shows
that a positive growth rate is possible at very low PrM, but not whether an
SSD is able to generate dynamically important field strengths. As the ReM
of the Sun and solar-like stars is several orders of magnitude higher than the
extrapolated RecritM value of 40, we yet expect dynamically important SSDs as
indicated by PrM = 1 simulations [15]. However, numerical simulations with
PrM down to 0.01 show a decrease of the saturation strength with decreasing
PrM [46].

The results of our study are well in agreement with previous numerical
studies considering partly overlapping PrM ranges [6–8, 10]. Those found some
discrepancies with the Kazantsev theory [45] for low PrM, for example the
narrowing down of the positive Kazantsev spectrum at low and intermediate
wavenumbers, and the emergence of a negative slope instead at large wave
numbers [7]. We could extend this regime to even lower PrM and therefore
study these discrepancies further. For PrM ≤ 0.005 we find that the magnetic
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spectrum shows a power-law scaling k−3, which is significantly steeper than
the tentative k−1 one proposed in [7] for 0.03 ≲ PrM ≲ 0.07 (but only for 8th-
order hyperdiffusivity). This latest finding of such a steep power law in the
magnetic spectrum challenges the current theoretical predictions and might
indicate that the SSD operating at low PrM is fundamentally different from
that at PrM ≈ 1.

Secondly, we find that the growth rates near the onset follow an ln(ReM)

dependence as predicted by [36, 37], and not a Re
1/2
M one as would result from

intertial-range-driven SSD [1, 7]. We do not observe a tendency of the growth
rate to become independent of ReM at the highest PrM either, which could be
an indication of an outer-scale driven SSD, as postulated by [7]. Furthermore,
we find that the pre-factor of γ ∝ ln(ReM/RecritM ) is nearly constant with its
mean around 0.022, in agreement with 0.023 of [10]. A constant value means
that the logarithmic scaling is independent of PrM and seems to be of general
validity.

Thirdly, we find that the measured characteristic magnetic wavenumber
kM is always smaller than the estimated kη, and furthermore, kM is not always

following the theory-predicted scaling of kη ∝ Pr
3/4
M with PrM. For the region

I, where PrM is close to 1, this discrepancy is up to a factor of three and the
deviation from the expected PrM-scaling is most significant here. These dis-
crepancies have been associated with the numerical setups injecting energy at
a forcing scale far larger than the dissipation scale, i.e. kf ≪ kη [1]. Further-
more, our runs in region I also have relatively low Re and therefore numerical
effects are not dismissible. In region III (low PrM), kM/kη is approaching the
constant offset factor 0.75. Hence, the scaling of kM/kν with PrM gets close
to the expected one. This result again indicates that the SSD at low PrM is
different from that at PrM ≈ 1.

An increase of RecritM with decreasing PrM followed by an asymptotic
levelling-off for PrM ≪ 1 was expected in the light of theory and previous
numerical studies. Instead, we found non-monotonic behavior as function of
PrM; we could relate it to the hydrodynamical phenomenon of the bottleneck.
If the characteristic magnetic wavenumber lies in the positive-gradient part of
the compensated spectrum, where the spectral slope is significantly reduced
from −5/3 to ∼ −1.4, the dynamo is hardest to excite (0.1 ≥ PrM ≥ 0.04). For
higher or lower PrM, the dynamo becomes increasingly easier to excite. The
local change in slope due to the bottleneck has often been related to an increase
of the “roughness” of the flow [1, 10, 43], which is expected to harden dynamo
excitation based on theoretical predictions [4, 9] from kinematic Kazantsev
theory [45]. In line with theory, the roughness-increasing part of the bottleneck
appears decisive in our results, however, only when kM is used as a criterion.
The usage of kη would in contrast suggest that the peak of the bottleneck is
decisive [10]. Such interpretation appears incorrect, as the rough estimate of kη
employed here does not represent the magnetic spectrum adequately and the
peak of the bottleneck does not coincide with the maximum of “roughness”.
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Online Methods

Numerical setup

For our simulations, we use a cubic Cartesian box with edge length L and solve
the isothermal magnetohydrodynamic equations without gravity, similar as in
[5, 47].

Du

Dt
= −c2s∇ ln ρ+ J ×B/ρ+∇ · (2ρνS)/ρ+ f , (1)

∂A

∂t
= u×B + η∇2A, (2)

Dρ

Dt
= −∇ · (ρu), (3)

where u is the flow speed, cs is the sound speed, ρ is the mass density, and
B = ∇ × A is the magnetic field with A being the vector potential. J =
∇×B/µ0 is the current density with magnetic vacuum permeability µ0, while
ν and η are constant kinematic viscosity and magnetic diffusivity, respectively.
The rate-of-strain tensor Sij = (ui,j + uj,i)/2 − δij∇ · u/3 is traceless. The
forcing function f provides random white-in-time non-helical transversal plane
waves, which are added in each time step to the momentum equation, see
[5] for details. The wavenumbers of the forcing lie in a narrow band around
kf = 2k1 with k1 = 2π/L. Its amplitude is chosen such that the Mach number
Ma = urms/cs is always around 0.082, where urms =

√
⟨u2⟩V is the volume

and time-averaged root-mean-square value. The Ma values of all runs are listed
in Supplementary Material Table 1. To normalize the growth rate λ, we use
an estimated turnover time τ = 1/urmskf ≈ 6/k1cs. The boundary conditions
are periodic for all quantities and we initialise the magnetic field with weak
Gaussian noise.

Diffusion is controlled by the prescribed parameters ν and η. Accord-
ingly, we define the fluid and magnetic Reynolds numbers with the forcing
wavenumber kf as

Re = urms/νkf , ReM = urms/ηkf . (4)

We performed numerical free decay experiments (see Supplementary Mate-
rial, Section 7), from which we confirm that the numerical diffusivities are
negligible.

The spectral kinetic and magnetic energy densities are defined via

∫

k

Ekin(k) dk = u2
rms ⟨ρ⟩V /2, (5)

∫

k

Emag(k) dk = B2
rms/2µ0, (6)
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where Brms =
√

⟨B2⟩V is the volume-averaged root-mean-square value and
⟨ρ⟩V the volume-averaged density.

Our numerical setup employs a drastically simplified model of turbulence
compared to the actual one in the Sun. There, turbulence is driven by stratified
rotating convection being of course neither isothermal nor isotropic. However,
these simplifications were to date necessary when performing a parameter
study at such high resolutions as we do. Nevertheless, we can connect our study
to solar parameters in terms of PrM and Ma. Their chosen values best repre-
sent the weakly stratified layers within the bulk of the solar convection zone,
where PrM ≪ 1 and Ma ≪ 1. The anisotropy in the flow on small scales is
much weaker there than near the surface and therefore close to our simplified
setup.

Data availability

Data for reproducing Figs. 2, 3, and 5 are included in the arti-
cle and its supplementary information files. The raw data (time-
series, spectra, slices, and snapshots) are provided through IDA/Fair-
data service hosted at CSC, Finland, under https://doi.org/10.23729/
206af669-07fd-4a30-9968-b4ded5003014. From the raw data, Figs. 1 and 4 can
be reproduced.

Code availability

We use the Pencil Code [48] to perform all simulations, with parallelized fast-
Fourier-transforms to calculate the spectra on the fly [49]. Pencil Code is freely
available under https://github.com/pencil-code/.
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Oishi, J., Schober, J., Plasson, R., Sandin, C., Karchniwy, E., Rodrigues,
L., Hubbard, A., Guerrero, G., Snodin, A., Losada, I., Pekkilä, J., Qian,
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1 Discussion on the roughness of the flow

We calculate the slope in the low-wavenumber part of the bottleneck by fitting Emag ∼ kαb in the interval
kbs . . . kb. As shown in Supplementary Fig. 1, the values of αb are significantly different from −5/3 without
the bottleneck. Furthermore, we find no clear systematic dependence of αb on Re.

Supplementary Figure 1: Slope of the low-wavenumber part of the bottleneck, αb, as a function of fluid
Reynolds number Re. The blue line indicates the slope −5/3 in the inertial range without bottleneck; the
red line shows a power-law fit with Re0.03.
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2 Spectra of a representative subset of the runs

Supplementary Figure 2: Kinetic energy spectra, for explanations see Fig. 4. The notation “kν→” indicates
that kν is outside the accessible k range.

bla
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Supplementary Figure 3: Normalized magnetic energy spectra, for explanations see Fig 4. The notation
“kν,η→” indicates that kν,η is outside the accessible k range.

bla
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3 Table of all runs

Supplementary Table 1: Overview of all performed runs.

Run Resolution PrM Re ReM Ma λτ σλτ

P10 2563 1.00 46 46 0.075 0.0102 0.0015

A80 2563 8.00 99 790 0.080 0.0962 0.0013
A40 2563 4.00 99 394 0.080 0.0794 0.0016
A20 2563 2.00 99 197 0.080 0.0557 0.0009
A15 2563 1.50 99 148 0.080 0.0458 0.0010
A10 2563 1.00 99 99 0.080 0.0315 0.0007
A08 2563 0.80 98 78 0.079 0.0200 0.0008
A05 2563 0.50 98 49 0.079 -0.0008 0.0019
A04 2563 0.40 97 39 0.079 -0.0052 0.0016

B20 2563 2.00 405 811 0.081 0.1129 0.0010
B10 2563 1.00 404 404 0.081 0.0707 0.0004
B05 2563 0.50 404 202 0.081 0.0334 0.0019
B0375 2563 0.375 403 151 0.081 0.0182 0.0011
B025 2563 0.25 405 101 0.081 0.0015 0.0010
B02 2563 0.2 405 81 0.082 -0.0060 0.0025
B0125 2563 0.125 405 51 0.082 -0.0217 0.0025
B01 2563 0.1 404 40 0.082 -0.0287 0.0015

C10 2563 1.00 1022 1022 0.082 0.1428 0.0075
C08 2563 0.80 1014 811 0.082 0.1079 0.0028
C04 2563 0.40 1013 405 0.082 0.0486 0.0007
C02 2563 0.20 1008 201 0.081 0.0132 0.0009
C015 2563 0.15 1014 152 0.082 0.0027 0.0008
C01 2563 0.10 1013 101 0.081 -0.0074 0.0010
C008 2563 0.08 1015 81 0.082 -0.0154 0.0022
C005 2563 0.05 1019 51 0.082 -0.0239 0.0014

D10 5123 1.00 2053 2053 0.083 0.1853 0.0052
D04 5123 0.40 2038 815 0.082 0.0682 0.0017
D02 5123 0.20 2026 405 0.082 0.0235 0.0006
D01 5123 0.10 2038 204 0.082 0.0053 0.0021
D0075 5123 0.075 2029 152 0.082 -0.0005 0.0015
D005 5123 0.05 2031 102 0.082 -0.0058 0.0017
D004 5123 0.04 2034 81 0.082 -0.0121 0.0009
D0025 5123 0.025 2030 51 0.082 -0.0236 0.0017

E10 10243 1.00 4069 4069 0.082 0.2769 0.0126
E08 10243 0.80 3999 3199 0.081 0.2141 0.0091
E04 10243 0.40 4087 1635 0.082 0.1148 0.0324
E02 10243 0.20 4064 813 0.082 0.0401 0.0025
E01 10243 0.10 4075 407 0.082 0.0155 0.0009
E008 10243 0.08 4089 325 0.082 0.0191 0.0025
E005 10243 0.05 4090 205 0.082 0.0044 0.0021
E00375 10243 0.0375 4121 155 0.083 0.0006 0.0024
E003 10243 0.03 4084 123 0.082 -0.0035 0.0012
E002 10243 0.02 4037 81 0.081 -0.0163 0.0023
E001 10243 0.01 4043 40 0.082 -0.0232 0.0029

PrM is the magnetic Prandtl number, Re and ReM are the fluid and magnetic Reynolds numbers, Ma = urms/cs is the Mach
number, τ = 1/urmskf is a rough estimate for the turnover time, λ is the SSD growth rate with its error σλ.
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Supplementary Table 1: continued.

Run Resolution PrM Re ReM Ma λτ σλτ

F01 20483 0.10 8028 803 0.081 0.0320 0.0046
F005 20483 0.05 7959 398 0.080 0.0192 0.0029
F0025 20483 0.025 8050 201 0.081 0.0108 0.0026
F001875 20483 0.01875 8093 152 0.082 0.0039 0.0027
F00125 20483 0.0125 8171 102 0.082 -0.0004 0.0022
F001 20483 0.01 8178 82 0.082 -0.0009 0.0033
F0005 20483 0.005 8217 41 0.083 -0.0162 0.0035

FG00125 20483 0.0125 12580 157 0.084 0.0026 0.0015
FG001 20483 0.01 12313 123 0.082 -0.0041 0.0021
FG0005 20483 0.005 12415 62 0.083 -0.0146 0.0039

G00125 40963 0.0125 18391 229 0.093 0.0372 0.0063
G001 40963 0.01 18200 182 0.092 0.0065 0.0062
G000625 40963 0.00625 16126 101 0.081 -0.0049 0.0069
G0005 40963 0.005 16071 80 0.081 -0.0152 0.0008

H0005 40963 0.005 32930 165 0.083 0.0103 0.0019
H00031 40963 0.003125 32717 102 0.082 0.0021 0.0052
H00025 46083 0.0025 32910 82 0.083 -0.0097 0.0035
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4 Table of spectral properties of a subset of the runs

Supplementary Table 2: Selected runs with spectral properties.

PrM Re ReM kν kbs kb kM kη αb

1.000000 1022 1022 157 11 21 56 157 -1.30
1.000000 2053 2053 268 16 36 100 268 -1.43
1.000000 4069 4069 456 22 62 173 456 -1.38
0.800000 1012 810 157 11 21 48 132 -1.29
0.800000 3998 3198 444 22 62 146 376 -1.40
0.400000 1014 405 156 11 21 35 78 -1.30
0.400000 4087 1634 459 22 62 105 231 -1.38
0.200000 1013 202 157 11 21 24 47 -1.29
0.100000 1018 101 157 11 21 16 27 -1.29
0.080000 1015 81 157 11 21 14 23 -1.29
0.080000 4068 325 451 22 62 41 67 -1.39
0.050000 4086 204 458 22 62 31 48 -1.38
0.050000 7958 397 755 32 101 50 79 -1.41
0.040000 2033 81 266 16 36 15 23 -1.44
0.020000 4038 80 449 22 62 16 23 -1.39
0.012500 8167 102 766 32 101 19 28 -1.41
0.012500 12580 157 1026 50 137 27 38 -1.39
0.012500 18391 229 1332 45 173 33 49 -1.48
0.010000 12313 123 1013 49 137 22 32 -1.39
0.010000 18200 182 1388 45 183 30 43 -1.48
0.006250 16126 100 1291 48 173 19 28 -1.45
0.005000 8217 41 767 32 101 10 14 -1.41
0.005000 12415 62 1013 49 137 13 19 -1.39
0.005000 16044 80 1273 45 165 16 23 -1.46
0.005000 32930 164 2037 97 264 26 38 -1.39
0.003125 32717 102 2036 100 272 19 26 -1.38

PrM is the magnetic Prandtl number, Re and ReM are the fluid and magnetic Reynolds numbers, respectively. kν = (εK/ν
3)1/4

is the viscous dissipation wavenumber with the viscous dissipation rate εK. kb and kbs locate the maximum of the bottleneck
and its starting point (75% of the maximum), respectively. kM =

∫
k
Emag(k)k dk/

∫
k
Emag(k)dk is the characteristic magnetic

wavenumber. kη = kνPr
3/4
M is the ohmic dissipation wavenumber and αb is the slope of the low-wavenumber part of the

bottleneck. All wavenumbers in units of k1.
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5 Details of fitting procedures and error calculation

5.1 Growth rates

The growth rate λ is calculated from the time series of Brms of the hydrodynamically saturated stage. For
this, we fit Brms(t) with exp(λt) using a least-χ2 fit. For a small number of runs, mostly at PrM ≈ 1, we
need to exclude that part of the time series, where no longer Brms �

√
ρu2

rms holds, i.e. the kinematic stage
is left. The majority of runs always stays in the kinematic stage though. The error of the growth rate,
σλ, is estimated from the maximum deviation of the fit, which is determined as follows: the time series is
divided into three equal parts, each fitted to obtain its value λi, i = 1, . . . , 3. We then use half the maximum
difference to λ for the error, i.e. σλ = max |λi − λ|/2. The minimal length of the time series was chosen to
guarantee that σλ is small enough while the maximum is bound by the resolution, hence the computational
cost. For resolutions of 2563 − 5123, we have tmax/τ ≈ 500, for 10243 − 20483, tmax/τ ≈ 150 and for 40963,
tmax/τ ≈ 15. λ and its error σλ are listed in Supplementary Table 1.

5.2 Critical magnetic Reynolds number

To calculate the critical magnetic Reynolds number Recrit
M for each PrM set, we fit a logarithmic function to

the growth rate, i.e. λτ = C1 ln(ReM)+C2. This functional form is motivated by the theoretical expectation
of [4, 1] and also by the distribution of the growth rates in Fig. 3a. We again use a least-χ2 fit, but take
into account the growth rate errors, σλ, for the weights. It turns out that the pre-factor C1 varies between
0.017 and 0.028 with a mean of 0.022. Thus, we conclude that the chosen functional form is appropriate.
Recrit

M (PrM) is calculated analytically from the zero of the fitting function, Recrit
M = exp(−C2/C1), and its

error σRecrit
M

is derived directly from each fit, representing a one-sigma uncertainty of Recrit
M . The values and

errors of Recrit
M are then used in Fig. 3b and are listed in Supplementary Table 3 together with C1. For the

relative error σRecrit
M
/Recrit

M , one finds for most of the runs values around 10 − 20%. However, taking these

errors into account the decrease of Recrit
M as function of PrM is still significant.

Supplementary Table 3: Critical magnetic Reynolds number

PrM Recrit
M σRecrit

M
C1

1.0000 32 1.0 0.028
0.4000 60 2.6 0.025
0.2000 101 10.1 0.017
0.1000 150 11.7 0.021
0.0800 153 21.1 0.025
0.0500 153 13.4 0.021
0.0250 138 15.3 0.024
0.0125 119 49.8 0.018
0.0100 136 31.8 0.017
0.0050 108 18.5 0.022

0.003125 102 - -

RecritM is the critical magnetic magnetic Reynolds number obtained by a fit λτ = C1 ln (ReM/RecritM ) to the growth rate and
σRecrit

M
its error. The last row refers to the only run for PrM = 0.003125 with λ ≈ 0, hence ReM ≈ RecritM (no fit).

5.3 Other fits

To obtain Recrit
M (PrM) ∝ Pr0.125

M in Fig. 3b, we use also a least-χ2 fit, employing the errors σRecrit
M

, similar

for kM/kν ∝ PrαM in Fig 4.
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6 Magnetic energy transfer functions

Seeking further insight into the dynamo operating in the three regimes of PrM, we look at the spectral
magnetic energy transfer functions. We follow the approach of [2], but using the convention by [3], where
the contribution of compressibility is subsumed in the stretching/shearing and advection terms, TStr and
TAdv, respectively, as follows

TStr(k) = B̂(k) · (+B ·∇u−B∇ · u/2)
∧∗

(k)/2µ0 + c.c. (1)

TAdv(k) = B̂(k) · (−u ·∇B −B∇ · u/2)
∧∗

(k)/2µ0 + c.c. (2)

Here, the hats indicate the Fourier transform and c.c. refers to the complex conjugate expressions. In
Supplementary Fig. 4a, we show these functions after shell integration, i.e. as functions of k = |k|, for six
runs with 0.005 ≤ PrM ≤ 0.8. As expected, the curves peak at higher wavenumbers for higher PrM. We also
look at the ratio of the wavenumbers at which TStr and TAdv has its maximum and minimum, respectively,
kStr/kAdv, which is determined from the curves after smoothing. We find that this ratio is maximal where
the dynamo is hardest to excite, shown as grey shade in the Supplementary Fig. 4b. However, we should
note that the simulations with the two lowest PrM have a higher resolution than the other four, which
could also influence the result. It remains unclear whether, or how, this enhanced ratio would relate to the
difficulty in exciting the dynamo at 0.1 ≥ PrM ≥ 0.04.

Supplementary Figure 4: Shell integrated spectral magnetic energy transfer functions vs. magnetic Prandtl
number PrM. Panel a: transfer by stretching/shearing, TStr, and by advection, TAdv, normalized by the
total magnetic energy density 〈Emag〉V =

∫
k Emag(k) dk divided by turnover time τ and averaged over

time. Color coding refers to PrM as shown in the legend. Panel b: ratio of the wavenumbers of maximal
stretching and minimal advection, kStr/kAdv, as a function of PrM. The grey shaded area indicates the
interval 0.1 ≥ PrM ≥ 0.04, where the dynamo is hardest to excite. The errors are calculated using an
estimated uncertainty in determining kStr and kAdv, Used runs: E08, E04, E008, E005, G001, H0005.
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7 Numerical diffusivity

In our low PrM simulations, η � ν, hence numerical diffusion might only play a role for the velocity field.
We estimate the numerical viscosity in our simulations in two ways. Firstly, we follow the approach of [2],
to estimate the fluid Reynolds number from the power spectra. For this we determine the Taylor microscale

λTM =

(∫

k
Ekin(k)dk /

∫

k
k2Ekin(k)dk

)1/2

, (3)

and the integral scale for turbulent motions

λint =

∫

k
k−1Ekin(k)dk /

∫

k
Ekin(k)dk. (4)

These scales can be used to estimate the effective Reynolds number as

Reeff ∝ (λint/λTM)2 . (5)

This is often used to estimate Reeff from observations or in simulations that use only numerical diffusivities,
although the proportionality constant is unknown. As shown in Supplementary Fig. 5, the effective Re
based on Equation (5) scales linearly with Re based on the prescribed value of ν. Assuming now plausibly
numerical diffusion to enter mainly in the form of hyperdiffusion, we infer that from this linear relationship
a notable influence of numerical diffusion can be ruled out.

Supplementary Figure 5: Effective Reynolds number proxy (5) as a function of Re from the prescribed ν.
The red line indicates (λint/λTM)2 = 0.026 Re.

In addition, we performed a flow decay experiment to estimate the numerical diffusion from the flow
decay rate in the absence of all other terms. The resulting effective viscosity is to high precision the same
as the prescribed ν up to wavenumbers k . 1000 k1, covering safely all scales relevant for the magnetic field.
From these two results we conclude that our numerical simulations are not affected by numerical diffusion,
and that the PrM regimes are accurately identified.
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